Towards Self-Supervised Covariance Estimation in Deep Heteroscedastic Regression

Published: 22 Jan 2025, Last Modified: 14 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: deep regression, heteroscedastic, uncertainty, 2-Wasserstein, KL-Divergence, Negative Log-Likelihood
TL;DR: We study the KL Divergence and 2-Wasserstein distance for self-supervised covariance estimation in deep regression
Abstract: Deep heteroscedastic regression models the mean and covariance of the target distribution through neural networks. The challenge arises from heteroscedasticity, which implies that the covariance is sample dependent and is often unknown. Consequently, recent methods learn the covariance through unsupervised frameworks, which unfortunately yield a trade-off between computational complexity and accuracy. While this trade-off could be alleviated through supervision, obtaining labels for the covariance is non-trivial. Here, we study self-supervised covariance estimation in deep heteroscedastic regression. We address two questions: (1) How should we supervise the covariance assuming ground truth is available? (2) How can we obtain pseudo labels in the absence of the ground-truth? We address (1) by analysing two popular measures: the KL Divergence and the 2-Wasserstein distance. Subsequently, we derive an upper bound on the 2-Wasserstein distance between normal distributions with non-commutative covariances that is stable to optimize. We address (2) through a simple neighborhood based heuristic algorithm which results in surprisingly effective pseudo labels for the covariance. Our experiments over a wide range of synthetic and real datasets demonstrate that the proposed 2-Wasserstein bound coupled with pseudo label annotations results in a computationally cheaper yet accurate deep heteroscedastic regression.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6614
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview