Unsupervised Crowdsourcing with Accuracy and Cost GuaranteesDownload PDFOpen Website

Published: 01 Jan 2022, Last Modified: 09 May 2023WiOpt 2022Readers: Everyone
Abstract: We consider the problem of cost-optimal utilization of a crowdsourcing platform for binary, unsupervised classification of a collection of items, given a prescribed error threshold. Workers on the crowdsourcing platform are assumed to be divided into multiple classes, based on their skill, experience, and/or past performance. We model each worker class via an unknown confusion matrix, and a (known) price to be paid per label prediction. For this setting, we propose algorithms for acquiring label predictions from workers, and for inferring the true labels of items. We prove that (i) our algorithms satisfy the prescribed error threshold, and (ii) if the number of (unlabeled) items available is large enough, the algorithms incur a cost that is near-optimal. Finally, we validate our algorithms, and some heuristics inspired by them, through an extensive case study.
0 Replies

Loading