Abstract: A human-like user simulator that anticipates users' satisfaction scores, actions, and utterances can help goal-oriented dialogue systems in evaluating the conversation and refining their dialogue strategies. However, little work has experimented with user simulators which can generate users' utterances. In this paper, we propose a deep learning-based user simulator that predicts users' satisfaction scores and actions while also jointly generating users' utterances in a multi-task manner. In particular, we show that 1) the proposed deep text-to-text multi-task neural model achieves state-of-the-art performance in the users' satisfaction scores and actions prediction tasks, and 2) in an ablation analysis, user satisfaction score prediction, action prediction, and utterance generation tasks can boost the performance with each other via positive transfers across the tasks. The source code and model checkpoints used for the experiments run in this paper are available at the following weblink: \urlhttps://github.com/kimdanny/user-simulation-t5.
0 Replies
Loading