A Novel Algorithm for Associative Classification

Published: 01 Jan 2007, Last Modified: 30 Sept 2024ICONIP (2) 2007EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Associative classifiers have been the subject of intense research for the last few years. Experiments have shown that they generally result in higher accuracy than decision tree classifiers. In this paper, we introduce a novel algorithm for associative classification “Classification based on Association Rules Generated in a Bidirectional Apporach” (CARGBA). It generates rules in two steps. At first, it generates a set of high confidence rules of smaller length with support pruning and then augments this set with some high confidence rules of higher length with support below minimum support. Experiments on 6 datasets show that our approach achieves better accuracy than other state-of-the-art associative classification algorithms.
Loading