Abstract: Embedding-based methods currently achieved impressive success in recommender systems. However, such methods are more likely to suffer from bias in data distribution, especially the attribute bias problem. For example, when a certain type of user, like the elderly, occupies the mainstream, the recommendation results of minority users would be seriously affected by the mainstream users’ attributes. To address this problem, most existing methods are proposed from the perspective of fairness, which focuses on eliminating unfairness but deteriorates the recommendation performance. Unlike these methods, in this paper, we focus on improving the recommendation performance for minority users of biased attributes. Along this line, we propose a novel attribute-aware Counterfactual Augmentation framework for Minority Users(CAMUS). Specifically, the CAMUS consists of a counterfactual augmenter, a confidence estimator, and a recommender. The counterfactual augmenter conducts data augmentation for the minority group by utilizing the interactions of mainstream users based on a universal counterfactual assumption. Besides, a tri-training-based confidence estimator is applied to ensure the effectiveness of augmentation. Extensive experiments on three real-world datasets have demonstrated the superior performance of the proposed methods. Further case studies verify the universality of the proposed CAMUS framework on different data sparsity, attributes, and models.
0 Replies
Loading