An Insight Into Neurodegeneration: Harnessing Functional MRI Connectivity in the Diagnosis of Mild Cognitive Impairment
Abstract: Alzheimer’s disease is a progressive form of memory loss that worsens over time. Detecting it early, when memory issues are mild, is crucial for effective interventions. Recent advancements in computer technology, specifically Graph Convolutional Networks (GCNs), have proven to be powerful tools for analyzing Magnetic Resonance Imaging (MRI) data comprehensively. In this study, we developed a GCN framework for diagnosing mild cognitive impairment (MCI) by examining the functional connectivity (FC) derived from resting-state functional MRI (rfMRI) data. Our research systematically explored various types and processing methods of FC, evaluating their performance on the OASIS-3 dataset. The experimental results revealed several key findings. On the one hand, the proposed GCN exhibited significantly superior performance over both the baseline GCN and the Support Vector Machine (SVM) models, with statistically significant differences. It attained the highest average accuracy of 80.3% and
Loading