Upping the Game: How 2D U-Net Skip Connections Flip 3D Segmentation

Published: 25 Sept 2024, Last Modified: 06 Nov 2024NeurIPS 2024 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: 3D medical image segmentation, Anisotropic voxel spacing, Skip connection, Plane feature extraction, Multiscale feature fusion
TL;DR: We propose 2D U-Net skip connection (uC) to replace conventional skip connections in 3D segmentation networks.
Abstract: In the present study, we introduce an innovative structure for 3D medical image segmentation that effectively integrates 2D U-Net-derived skip connections into the architecture of 3D convolutional neural networks (3D CNNs). Conventional 3D segmentation techniques predominantly depend on isotropic 3D convolutions for the extraction of volumetric features, which frequently engenders inefficiencies due to the varying information density across the three orthogonal axes in medical imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI). This disparity leads to a decline in axial-slice plane feature extraction efficiency, with slice plane features being comparatively underutilized relative to features in the time-axial. To address this issue, we introduce the U-shaped Connection (uC), utilizing simplified 2D U-Net in place of standard skip connections to augment the extraction of the axial-slice plane features while concurrently preserving the volumetric context afforded by 3D convolutions. Based on uC, we further present uC 3DU-Net, an enhanced 3D U-Net backbone that integrates the uC approach to facilitate optimal axial-slice plane feature utilization. Through rigorous experimental validation on five publicly accessible datasets—FLARE2021, OIMHS, FeTA2021, AbdomenCT-1K, and BTCV, the proposed method surpasses contemporary state-of-the-art models. Notably, this performance is achieved while reducing the number of parameters and computational complexity. This investigation underscores the efficacy of incorporating 2D convolutions within the framework of 3D CNNs to overcome the intrinsic limitations of volumetric segmentation, thereby potentially expanding the frontiers of medical image analysis. Our implementation is available at https://github.com/IMOP-lab/U-Shaped-Connection.
Primary Area: Machine learning for healthcare
Submission Number: 20485
Loading