Abstract: With the progress of clinical imaging innovation and machine learning, the computer-assisted diagnosis of breast histology images has attracted broad attention. Nonetheless, the use of computer-assisted diagnoses has been blocked due to the incomprehensibility of customary classification models. In view of this question, we propose a novel method for <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">L</u> earning <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</u> inary <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">S</u> emantic <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">E</u> mbedding (LBSE). In this study, bit balance and uncorrelation constraints, double supervision, discrete optimization and asymmetric pairwise similarity are seamlessly integrated for learning binary semantic-preserving embedding. Moreover, a fusion-based strategy is carefully designed to handle the intractable problem of parameter setting, saving huge amounts of time for boundary tuning. Based on the above-mentioned proficient and effective embedding, classification and retrieval are simultaneously performed to give interpretable image-based deduction and model helped conclusions for breast histology images. Extensive experiments are conducted on three benchmark datasets to approve the predominance of LBSE in different situations.
0 Replies
Loading