Accurate flexible refinement for atomic-level protein structure using cryo-EM density maps and deep learning

Published: 01 Jan 2022, Last Modified: 16 May 2025Briefings Bioinform. 2022EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: With the rapid progress of deep learning in cryo-electron microscopy and protein structure prediction, improving the accuracy of the protein structure model by using a density map and predicted contact/distance map through deep learning has become an urgent need for robust methods. Thus, designing an effective protein structure optimization strategy based on the density map and predicted contact/distance map is critical to improving the accuracy of structure refinement. In this article, a protein structure optimization method based on the density map and predicted contact/distance map by deep-learning technology was proposed in accordance with the result of matching between the density map and the initial model. Physics- and knowledge-based energy functions, integrated with Cryo-EM density map data and deep-learning data, were used to optimize the protein structure in the simulation. The dynamic confidence score was introduced to the iterative process for choosing whether it is a density map or a contact/distance map to dominate the movement in the simulation to improve the accuracy of refinement. The protocol was tested on a large set of 224 non-homologous membrane proteins and generated 214 structural models with correct folds, where 4.5% of structural models were generated from structural models with incorrect folds. Compared with other state-of-the-art methods, the major advantage of the proposed methods lies in the skills for using density map and contact/distance map in the simulation, as well as the new energy function in the re-assembly simulations. Overall, the results demonstrated that this strategy is a valuable approach and ready to use for atomic-level structure refinement using cryo-EM density map and predicted contact/distance map.
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview