Abstract: We construct bicategories of Markov processes where the objects are input and output sets, the morphisms (one-cells) are Markov processes and the two-cells are simulations. This builds on the work of Baez, Fong and Pollard, who showed that a certain kind of finite-space continuous-time Markov chain (CTMC) can be viewed as morphisms in a category. This view allows a compositional description of their CTMCs. Our contribution is to develop a notion of simulation between processes and construct a bicategory where the two-cells are simulation morphisms. Our version is for processes that are essentially probabilistic transition systems with discrete time steps and which do not satisfy a detailed balance condition. We have also extended the theory to continuous space processes.
0 Replies
Loading