Learning to Segment from Noisy Annotations: A Spatial Correction ApproachDownload PDF

Published: 01 Feb 2023, Last Modified: 22 Dec 2024ICLR 2023 posterReaders: Everyone
Abstract: Noisy labels can significantly affect the performance of deep neural networks (DNNs). In medical image segmentation tasks, annotations are error-prone due to the high demand in annotation time and in the annotators' expertise. Existing methods mostly tackle label noise in classification tasks. Their independent-noise assumptions do not fit label noise in segmentation task. In this paper, we propose a novel noise model for segmentation problems that encodes spatial correlation and bias, which are prominent in segmentation annotations. Further, to mitigate such label noise, we propose a label correction method to recover true label progressively. We provide theoretical guarantees of the correctness of the proposed method. Experiments show that our approach outperforms current state-of-the-art methods on both synthetic and real-world noisy annotations.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/learning-to-segment-from-noisy-annotations-a/code)
20 Replies

Loading