Agent Modelling under Partial Observability for Deep Reinforcement LearningDownload PDF

Published: 09 Nov 2021, Last Modified: 05 May 2023NeurIPS 2021 PosterReaders: Everyone
Keywords: agent modelling, deep reinforcement learning, partial observability, opponent modelling
Abstract: Modelling the behaviours of other agents is essential for understanding how agents interact and making effective decisions. Existing methods for agent modelling commonly assume knowledge of the local observations and chosen actions of the modelled agents during execution. To eliminate this assumption, we extract representations from the local information of the controlled agent using encoder-decoder architectures. Using the observations and actions of the modelled agents during training, our models learn to extract representations about the modelled agents conditioned only on the local observations of the controlled agent. The representations are used to augment the controlled agent's decision policy which is trained via deep reinforcement learning; thus, during execution, the policy does not require access to other agents' information. We provide a comprehensive evaluation and ablations studies in cooperative, competitive and mixed multi-agent environments, showing that our method achieves significantly higher returns than baseline methods which do not use the learned representations.
Supplementary Material: pdf
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
Code: https://github.com/uoe-agents/LIAM
16 Replies

Loading