Abstract: As the application of knowledge graphs becomes increasingly widespread, the issue of knowledge graph incompleteness has garnered significant attention. As a classical type of non-euclidean spatial data, knowledge graphs possess various complex structural types. However, most current knowledge graph completion models are developed within a single space, which makes it challenging to capture the inherent knowledge information embedded in the entire knowledge graph. This limitation hinders the representation learning capability of the models. To address this issue, this paper focuses on how to better extend the representation learning from a single space to Riemannian manifolds, which are capable of representing more complex structures. We propose a new knowledge graph completion model called MRME-KGC, based on multi-view Riemannian Manifolds fusion to achieve this. Specifically, MRME-KGC simultaneously considers the fusion of four views: two hyperbolic Riemannian spaces with negative curvature, a Euclidean Riemannian space with zero curvature, and a spherical Riemannian space with positive curvature to enhance knowledge graph modeling. Additionally, this paper proposes a contrastive learning method for Riemannian spaces to mitigate the noise and representation issues arising from Multi-view Riemannian Manifolds Fusion. This paper presents extensive experiments on MRME-KGC across multiple datasets. The results consistently demonstrate that MRME-KGC significantly outperforms current state-of-the-art models, achieving highly competitive performance even with low-dimensional embeddings.
Loading