Fast Certified Robust Training with Short WarmupDownload PDF

Published: 09 Nov 2021, Last Modified: 05 May 2023NeurIPS 2021 PosterReaders: Everyone
Keywords: Certified robustness, Adversarial robustness
TL;DR: We propose several improvements to Interval Bound Propagation (IBP) based certified robust training, which leads to faster training with short warmup schedules.
Abstract: Recently, bound propagation based certified robust training methods have been proposed for training neural networks with certifiable robustness guarantees. Despite that state-of-the-art (SOTA) methods including interval bound propagation (IBP) and CROWN-IBP have per-batch training complexity similar to standard neural network training, they usually use a long warmup schedule with hundreds or thousands epochs to reach SOTA performance and are thus still costly. In this paper, we identify two important issues in existing methods, namely exploded bounds at initialization, and the imbalance in ReLU activation states and improve IBP training. These two issues make certified training difficult and unstable, and thereby long warmup schedules were needed in prior works. To mitigate these issues and conduct faster certified training with shorter warmup, we propose three improvements based on IBP training: 1) We derive a new weight initialization method for IBP training; 2) We propose to fully add Batch Normalization (BN) to each layer in the model, since we find BN can reduce the imbalance in ReLU activation states; 3) We also design regularization to explicitly tighten certified bounds and balance ReLU activation states during wamrup. We are able to obtain 65.03% verified error on CIFAR-10 ($\epsilon=\frac{8}{255}$) and 82.36% verified error on TinyImageNet ($\epsilon=\frac{1}{255}$) using very short training schedules (160 and 80 total epochs, respectively), outperforming literature SOTA trained with hundreds or thousands epochs under the same network architecture. The code is available at
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
Supplementary Material: pdf
11 Replies