WinNet:time series forecasting with a window-enhanced period extracting and interacting

21 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: time series forecasting;periodic window;CNN network
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Recently, Transformer-based methods have significantly improved state-of-the-art time series forecasting results, but they suffer from high computational costs and the inability to capture the long and short periodicity of time series. We present a highly accurate and simply structured CNN-based model for long-term time series forecasting tasks, called WinNet, including (i) Inter-Intra Period Encoder (I2PE) to transform 1D sequence into 2D tensor with long and short periodicity according to the predefined periodic window, (ii) Two-Dimensional Period Decomposition (TDPD) to model period-trend and oscillation terms, and (iii) Decomposition Correlation Block (DCB) to leverage the correlations of the period-trend and oscillation terms to support the prediction tasks by CNNs. Results on nine benchmark datasets show that the WinNet can achieve SOTA performance and lower computational complexity over CNN-, MLP-, Transformer-based approaches. The WinNet provides potential for the CNN-based methods in the time series forecasting tasks, with perfect tradeoff between performance and efficiency.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: pdf
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3254
Loading