Using Natural Language Explanations to Rescale Human Judgments

Published: 10 Jul 2024, Last Modified: 26 Aug 2024COLMEveryoneRevisionsBibTeXCC BY 4.0
Research Area: Evaluation
Keywords: human evaluation, natural language explanation, likert ratings, question answering, LLM
TL;DR: In the era of subjective annotations, eliciting natural language explanations from human judges can surface nuances in evaluation. We propose a method that operationalizes these explanations in a principled manner.
Abstract: The rise of large language models (LLMs) has brought a critical need for high-quality human-labeled data, particularly for processes like human feedback and evaluation. A common practice is to label data via consensus annotation over human judgments. However, annotators' judgments for subjective tasks can differ in many ways: they may reflect different qualitative judgments about an example, and they may be mapped to a labeling scheme in different ways. We show that these nuances can be captured by natural language explanations, and propose a method to rescale ordinal annotations and explanations using LLMs. Specifically, we feed annotators' Likert ratings and corresponding explanations into an LLM and prompt it to produce a numeric score anchored in a scoring rubric. These scores should reflect the annotators' underlying assessments of the example. The rubric can be designed or modified after annotation, and include distinctions that may not have been known when the original error taxonomy was devised. We explore our technique in the context of rating system outputs for a document-grounded question answering task, where LLMs achieve near-human performance. Our method rescales the raw judgments without impacting agreement and brings the scores closer to human judgments grounded in the same scoring rubric.
Supplementary Material: zip
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the COLM Code of Ethics on https://colmweb.org/CoE.html
Author Guide: I certify that this submission complies with the submission instructions as described on https://colmweb.org/AuthorGuide.html
Submission Number: 393
Loading