Abstract: There is a need for realistic Opposing Forces (OPFOR)behavior in military training simulations. Current trainingsimulations generally only have simple, non-adaptivebehaviors, requiring human instructors to play the role ofOPFOR in any complicated scenario. This poster addressesthis need by focusing on a specific scenario: trainingreinforcement learning agents to react to an ambush. Itproposes a novel way to check for occlusion algorithmically.It shows vector fields showing the agent’s actions throughthe course of a training run. It shows that a single agentswitching between multiple goals is possible, at least in asimplified environment. Such an approach could reduce theneed to develop different agents for different scenarios.Finally, it shows a competent agent trained on a simplifiedReact to Ambush scenario, demonstrating the plausibility ofa scaled-up version.
Loading