Improving planning and MBRL with temporally-extended actions

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY-NC-ND 4.0
Keywords: macro-actions, temporally-extended actions, model-based reinforcement learning, reinforcement learning, planning
Abstract: Continuous time systems are often modeled using discrete time dynamics but this requires a small simulation step to maintain accuracy. In turn, this requires a large planning horizon which leads to computationally demanding planning problems and reduced performance. Previous work in model-free reinforcement learning has partially addressed this issue using action repeats where a policy is learned to determine a discrete action duration. Instead we propose to control the continuous decision timescale directly by using temporally-extended actions and letting the planner treat the duration of the action as an additional optimization variable along with the standard action variables. This additional structure has multiple advantages. It speeds up simulation time of trajectories and, importantly, it allows for deep horizon search in terms of primitive actions while using a shallow search depth in the planner. In addition, in the model-based reinforcement learning (MBRL) setting, it reduces compounding errors from model learning and improves training time for models. We show that this idea is effective and that the range for action durations can be automatically selected using a multi-armed bandit formulation and integrated into the MBRL framework. An extensive experimental evaluation both in planning and in MBRL, shows that our approach yields faster planning, better solutions, and that it enables solutions to problems that are not solved in the standard formulation.
Primary Area: Reinforcement learning (e.g., decision and control, planning, hierarchical RL, robotics)
Submission Number: 17194
Loading