Watts: Infrastructure for Open-Ended LearningDownload PDFOpen Website

Published: 01 Jan 2022, Last Modified: 12 May 2023CoRR 2022Readers: Everyone
Abstract: This paper proposes a framework called Watts for implementing, comparing, and recombining open-ended learning (OEL) algorithms. Motivated by modularity and algorithmic flexibility, Watts atomizes the components of OEL systems to promote the study of and direct comparisons between approaches. Examining implementations of three OEL algorithms, the paper introduces the modules of the framework. The hope is for Watts to enable benchmarking and to explore new types of OEL algorithms. The repo is available at \url{https://github.com/aadharna/watts}
0 Replies

Loading