Is attention required for ICL? Exploring the Relationship Between Model Architecture and In-Context Learning Ability
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: in-context learning, neural architectures
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: What is the relationship between model architecture and the ability to perform in-context learning? In this empirical study, we take the first steps toward answering this question. We evaluate thirteen model architectures capable of causal language modeling across a suite of synthetic in-context learning tasks. These selected architectures represent a broad range of paradigms, including recurrent and convolution-based neural networks, transformers, state space model inspired, and other emerging attention alternatives. We discover that all the considered architectures can perform in-context learning under a wider range of conditions than previously documented. Additionally, we observe stark differences in statistical efficiency and consistency by varying the number of in-context examples and task difficulty. We also measure each architecture's predisposition towards in-context learning when presented with the option to memorize rather than leverage in-context examples. Finally, and somewhat surprisingly, we find that several attention alternatives are sometimes competitive with or better in-context learners than transformers. However, no single architecture demonstrates consistency across all tasks, with performance either plateauing or declining when confronted with a significantly larger number of in-context examples than those encountered during gradient-based training.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: general machine learning (i.e., none of the above)
Submission Number: 6993
Loading