Fine-Grained Complexity of Computing Degree-Constrained Spanning Trees

Published: 01 Jan 2025, Last Modified: 13 May 2025CoRR 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: We investigate the computation of minimum-cost spanning trees satisfying prescribed vertex degree constraints: Given a graph $G$ and a constraint function $D$, we ask for a (minimum-cost) spanning tree $T$ such that for each vertex $v$, $T$ achieves a degree specified by $D(v)$. Specifically, we consider three kinds of constraint functions ordered by their generality -- $D$ may either assign each vertex to a list of admissible degrees, an upper bound on the degrees, or a specific degree. Using a combination of novel techniques and state-of-the-art machinery, we obtain an almost-complete overview of the fine-grained complexity of these problems taking into account the most classical graph parameters of the input graph $G$. In particular, we present SETH-tight upper and lower bounds for these problems when parameterized by the pathwidth and cutwidth, an ETH-tight algorithm parameterized by the cliquewidth, and a nearly SETH-tight algorithm parameterized by treewidth.
Loading