Keywords: offline RL, robust, scalability, model-free
Abstract: Offline reinforcement learning (RL) has gained considerable attention for its ability to learn policies from pre-collected data without real-time interaction, which makes it particularly useful for high-risk applications. However, due to its reliance on offline datasets, existing works inevitably introduce assumptions to ensure effective learning, which, however, often lead to a trade-off between robustness to model mismatch and scalability to large environments. In this paper, we enhance both aspects with a novel double-pessimism principle, which conservatively estimates performance and accounts for both limited data and potential model mismatches, two major reasons for the previous trade-off. We then propose a universal, model-free algorithm to learn an optimal policy that is robust to potential environment mismatches, which enhances robustness in a scalable manner. Furthermore, we provide a sample complexity analysis of our algorithm when the mismatch is modeled by the $l_\alpha$-norm, which also theoretically demonstrates the efficiency of our method. Extensive experiments further demonstrate that our approach significantly improves robustness in a more scalable manner than existing methods.
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1945
Loading