Accelerating Multi-Block Constrained Optimization Through Learning to Optimize

27 Sept 2024 (modified: 25 Jan 2025)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Learning to Optimize, Multi-Block Constrained Optimzation, Alternating Direction Method of Multipliers, Proximal Augmented Lagrangian Methods
Abstract: Learning to Optimize (L2O) approaches, including algorithm unrolling, plug-and-play methods, and hyperparameter learning, have garnered significant attention and have been successfully applied to the Alternating Direction Method of Multipliers (ADMM) and its variants. However, the natural extension of L2O to multi-block ADMM-type methods remains largely unexplored. Such an extension is critical, as multi-block methods leverage the separable structure of optimization problems, offering substantial reductions in per-iteration complexity. Given that classical multi-block ADMM does not guarantee convergence, the Majorized Proximal Augmented Lagrangian Method (MPALM), which shares a similar form with multi-block ADMM and ensures convergence, is more suitable in this setting. Despite its theoretical advantages, MPALM’s performance is highly sensitive to the choice of penalty parameters. To address this limitation, we propose a novel L2O approach that adaptively selects this hyperparameter using supervised learning. We demonstrate the versatility and effectiveness of our method by applying it to the Lasso problem and the optimal transport problem. Our numerical results show that the proposed framework outperforms popular alternatives. Given its applicability to generic linearly constrained composite optimization problems, this work opens the door to a wide range of potential real-world applications.
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12070
Loading