SeSE: A Structural Information-Guided Uncertainty Quantification Framework for Hallucination Detection in LLMs

Published: 2025, Last Modified: 16 Jan 2026CoRR 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Reliable uncertainty quantification (UQ) is essential for deploying large language models (LLMs) in safety-critical scenarios, as it enables them to abstain from responding when uncertain, thereby avoiding ``hallucinating'' falsehoods. However, state-of-the-art UQ methods primarily rely on semantic probability distributions or pairwise distances, overlooking latent semantic structural information that could enable more precise uncertainty estimates. This paper presents Semantic Structural Entropy (SeSE), a principled UQ framework that quantifies the inherent semantic uncertainty of LLMs from a structural information perspective for hallucination detection. SeSE operates in a zero-resource manner and is applicable to both open- and closed-source LLMs, making it an ``off-the-shelf" solution for new models and tasks. Specifically, to effectively model semantic spaces, we first develop an adaptively sparsified directed semantic graph construction algorithm that captures directional semantic dependencies while automatically pruning unnecessary connections that introduce negative interference. We then exploit latent semantic structural information through hierarchical abstraction: SeSE is defined as the structural entropy of the optimal semantic encoding tree, formalizing intrinsic uncertainty within semantic spaces after optimal compression. A higher SeSE value corresponds to greater uncertainty, indicating that LLMs are highly likely to generate hallucinations. In addition, to enhance fine-grained UQ in long-form generation, we extend SeSE to quantify the uncertainty of individual claims by modeling their random semantic interactions, providing theoretically explicable hallucination detection. Extensive experiments across 29 model-dataset combinations show that SeSE significantly outperforms advanced UQ baselines.
Loading