Tracking Vertex Flow and Model Adaptation for Three-Dimensional Spatiotemporal Face Analysis

Published: 01 Jan 2010, Last Modified: 11 Nov 2024IEEE Trans. Syst. Man Cybern. Part A 2010EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Research in the areas of 3-D face recognition and 3-D facial expression analysis has intensified in recent years. However, most research has been focused on 3-D static data analysis. In this paper, we investigate the facial analysis problem using dynamic 3-D face model sequences. One of the major obstacles for analyzing such data is the lack of correspondences of features due to the variable number of vertices across individual models or 3-D model sequences. In this paper, we present an effective approach for establishing vertex correspondences using a tracking-model-based approach for vertex registration, coarse-to-fine model adaptation, and vertex motion trajectory (called vertex flow) estimation. We propose to establish correspondences across frame models based on a 2-D intermediary, which is generated using conformal mapping and a generic model adaptation algorithm. Based on our newly created 3-D dynamic face database, we also propose to use a spatiotemporal hidden Markov model (ST-HMM) that incorporates 3-D surface feature characterization to learn the spatial and temporal information of faces. The advantage of using 3-D dynamic data for face recognition has been evaluated by comparing our approach to three conventional approaches: 2-D-video-based temporal HMM model, conventional 2-D-texture-based approach (e.g., Gabor-wavelet-based approach), and static 3-D-model-based approaches. To further evaluate the usefulness of vertex flow and the adapted model, we have also applied a spatial-temporal face model descriptor for facial expression classification based on dynamic 3-D model sequences.
Loading