Abstract: We explore some of the properties of a subposet of the Tamari lattice introduced by Pallo, which we call the comb poset. We show that a number of binary functions that are not well-behaved in the Tamari lattice are remarkably well-behaved within an interval of the comb poset: rotation distance, meets and joins, and the common parse words function for a pair of trees. We relate this poset to a partial order on the symmetric group studied by Edelman.
0 Replies
Loading