Causal Reasoning through Two Cognition Layers for Improving Generalization in Visual Question Answering

Published: 07 Oct 2023, Last Modified: 01 Dec 2023EMNLP 2023 MainEveryoneRevisionsBibTeX
Submission Type: Regular Long Paper
Submission Track: Language Grounding to Vision, Robotics and Beyond
Submission Track 2: Linguistic Theories, Cognitive Modeling, and Psycholinguistics
Keywords: visual question answering, generalization, casual reasoning, human cognition
TL;DR: Improve the generalization ability in Visual Question Answering task via enhancing the causal reasoning, inspired from human cognition.
Abstract: Generalization in Visual Question Answering (VQA) requires models to answer questions about images with contexts beyond the training distribution. Existing attempts primarily refine unimodal aspects, overlooking enhancements in multimodal aspects. Besides, diverse interpretations of the input lead to various modes of answer generation, highlighting the role of causal reasoning between interpreting and answering steps in VQA. Through this lens, we propose Cognitive pathways VQA (CopVQA) improving the multimodal predictions by emphasizing causal reasoning factors. CopVQA first operates a pool of pathways that capture diverse causal reasoning flows through interpreting and answering stages. Mirroring human cognition, we decompose the responsibility of each stage into distinct experts and a cognition-enabled component (CC). The two CCs strategically execute one expert for each stage at a time. Finally, we prioritize answer predictions governed by pathways involving both CCs while disregarding answers produced by either CC, thereby emphasizing causal reasoning and supporting generalization. Our experiments on real-life and medical data consistently verify that CopVQA improves VQA performance and generalization across baselines and domains. Notably, CopVQA achieves a new state-of-the-art (SOTA) on the PathVQA dataset and comparable accuracy to the current SOTA on VQA-CPv2, VQAv2, and VQA- RAD, with one-fourth of the model size.
Submission Number: 2574
Loading