Deception in Reinforced Autonomous Agents: The Unconventional Rabbit Hat Trick in Legislation

Published: 01 Jan 2024, Last Modified: 08 Oct 2024CoRR 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: We explore the ability of large language model (LLM)-based agents to engage in subtle deception such as strategically phrasing and intentionally manipulating information to misguide and deceive other agents. This harmful behavior can be hard to detect, unlike blatant lying or unintentional hallucination. We build an adversarial testbed mimicking a legislative environment where two LLMs play opposing roles: a corporate *lobbyist* proposing amendments to bills that benefit a specific company while evading a *critic* trying to detect this deception. We use real-world legislative bills matched with potentially affected companies to ground these interactions. Our results show that LLM lobbyists initially exhibit limited deception against strong LLM critics which can be further improved through simple verbal reinforcement, significantly enhancing their deceptive capabilities, and increasing deception rates by up to 40 points. This highlights the risk of autonomous agents manipulating other agents through seemingly neutral language to attain self-serving goals.
Loading