Autonomous Vehicles Using Multi-Agent Reinforcement Learning for Routing Decisions Can Harm Urban Traffic

Published: 01 Jan 2025, Last Modified: 16 May 2025CoRR 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Autonomous vehicles (AVs) using Multi-Agent Reinforcement Learning (MARL) for simultaneous route optimization may destabilize traffic environments, with human drivers possibly experiencing longer travel times. We study this interaction by simulating human drivers and AVs. Our experiments with standard MARL algorithms reveal that, even in trivial cases, policies often fail to converge to an optimal solution or require long training periods. The problem is amplified by the fact that we cannot rely entirely on simulated training, as there are no accurate models of human routing behavior. At the same time, real-world training in cities risks destabilizing urban traffic systems, increasing externalities, such as $CO_2$ emissions, and introducing non-stationarity as human drivers adapt unpredictably to AV behaviors. Centralization can improve convergence in some cases, however, it raises privacy concerns for the travelers' destination data. In this position paper, we argue that future research must prioritize realistic benchmarks, cautious deployment strategies, and tools for monitoring and regulating AV routing behaviors to ensure sustainable and equitable urban mobility systems.
Loading