Precise End-Effector Control for an Aerial Manipulator Under Composite Disturbances: Theory and Experiments

Published: 03 Jun 2024, Last Modified: 30 Sept 2024IEEEEveryoneCC BY 4.0
Abstract: One of inescapable challenges in facilitating the application of aerial manipulators is to achieve the high precision control performance of the end-effector. The manipulator motions beneath the UAV platform constantly contend with composite disturbances, such as floating base, strong inner coupling effects, and model uncertainties. These factors collectively contribute to an inadequate control performance. In this paper, a composite control scheme is presented to tackle this issue. Specifically, a joint velocity planner is proposed to handle the base-floating disturbance in kinematic loop. By virtue of the generated joint reference signal, the base-floating disturbance can be effectively alleviated. The tracking error of the end-effector can be ensured within a small set. Moreover, in a complementary manner, neural network (NN) approximation and nonlinear disturbance observer (NDO) compensation are combined to track the joint references. The NN is adopted to estimate composite dynamic model including inner coupling effects and model uncertainties, while the NDO is designed to handle the remaining uncompensated part. The stability of the closed-loop system including the manipulator kinematics and dynamics is guaranteed using the Lyapunovlike method. Experimental results are reported to manifest the effectiveness of the proposed composite control scheme.
Loading