INRSTEG: FLEXIBLE CROSS-MODAL LARGE CAPACITY STEGANOGRAPHY VIA IMPLICIT REPRESENTATIONS

19 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: representation learning for computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Steganography, Implicit Neural Representation
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: We present INRSteg, an innovative lossless steganography framework based on a novel data form Implicit Neural Representations (INR) that is modal-agnostic. Our framework is considered for effectively hiding multiple data without altering the original INR ensuring high-quality stego data. The neural representations of secret data are first concatenated to have independent paths that do not overlap, then weight freezing techniques are applied to the diagonal blocks of the weight matrices for the concatenated network to preserve the weights of secret data while additional free weights in the off-diagonal blocks of weight matrices are fitted to the cover data. Our framework can perform unexplored cross-modal steganography for various modalities including image, audio, video, and 3D shapes, and it achieves state-of-the-art performance compared to previous intra-modal steganographic methods.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1778
Loading