Keywords: time series forecasting, non-stationary
TL;DR: This work introduces Dual-domain Dynamic Normalization (DDN) to dynamically captures distribution variations in both time and frequency domains.
Abstract: Deep neural networks (DNNs) have recently achieved remarkable advancements in time series forecasting (TSF) due to their powerful ability of sequence dependence modeling. To date, existing DNN-based TSF methods still suffer from unreliable predictions for real-world data due to its non-stationarity characteristics, i.e., data distribution varies quickly over time. To mitigate this issue, several normalization methods (e.g., SAN) have recently been specifically designed by normalization in a fixed period/window in the time domain. However, these methods still struggle to capture distribution variations, due to the complex time patterns of time series in the time domain. Based on the fact that wavelet transform can decompose time series into a linear combination of different frequencies, which exhibits distribution variations with time-varying periods, we propose a novel Dual-domain Dynamic Normalization (DDN) to dynamically capture distribution variations in both time and frequency domains. Specifically, our DDN tries to eliminate the non-stationarity of time series via both frequency and time domain normalization in a sliding window way. Besides, our DDN can serve as a plug-in-play module, and thus can be easily incorporated into other forecasting models. Extensive experiments on public benchmark datasets under different forecasting models demonstrate the superiority of our DDN over other normalization methods. Code will be made available following the review process.
Primary Area: Other (please use sparingly, only use the keyword field for more details)
Submission Number: 6677
Loading