Exact Tensor Completion Powered by Slim Transforms

Published: 03 Feb 2026, Last Modified: 06 Feb 2026AISTATS 2026 PosterEveryoneRevisionsBibTeXCC BY 4.0
TL;DR: We break the contraints of isotropy and self-adjointness, having established exact tensor completion guarantee with arbitrary linear transforms, and disclose why slim transforms outperform their square counterparts theoretically.
Abstract: In this work, a tensor completion problem is studied, which aims to perfectly recover the tensor from partial observations. The existing theoretical guarantee requires the involved transform to be orthogonal, which hinders its applications. In this paper, jumping out of the constraints of isotropy and self-adjointness, the theoretical guarantee of exact tensor completion with arbitrary linear transforms is established by directly operating the tensors in the transform domain. With the enriched choices of transforms, we theoretically disclose why slim transforms outperform their square counterparts, providing support for existing works on experimental excellence of slim transforms. Our model and proof greatly enhance the flexibility of tensor completion and extensive experiments validate the superiority of the proposed method.
Submission Number: 2207
Loading