Gradient Coding with Dynamic Clustering for Straggler MitigationDownload PDFOpen Website

Published: 01 Jan 2021, Last Modified: 16 May 2023ICC 2021Readers: Everyone
Abstract: In distributed synchronous gradient descent (GD) the main performance bottleneck for the per-iteration completion time is the slowest straggling workers. To speed up GD iterations in the presence of stragglers, coded distributed computation techniques are implemented by assigning redundant computations to workers. In this paper, we propose a novel gradient coding (GC) scheme that utilizes dynamic clustering, denoted by GC-DC, to speed up gradient calculations. Under time-correlated straggling behavior, GC-DC aims at regulating the number of straggling workers in each cluster based on the straggler behavior in the previous iteration. We numerically show that GC-DC provides significant improvements in the average completion time (of each iteration) with no increase in the communication load compared to the original GC scheme.
0 Replies

Loading