Human Observation-Inspired Trajectory Prediction for Autonomous Driving in Mixed-Autonomy Traffic Environments
Abstract: In the burgeoning field of autonomous vehicles (AVs), trajectory prediction remains a formidable challenge, especially in mixed autonomy environments. Traditional approaches often rely on computational methods such as time-series analysis. Our research diverges significantly by adopting an interdisciplinary approach that integrates principles of human cognition and observational behavior into trajectory prediction models for AVs. We introduce a novel “adaptive visual sector” mechanism that mimics the dynamic allocation of attention human drivers exhibit based on factors like spatial orientation, proximity, and driving speed. Additionally, we develop a “dynamic traffic graph” using Convolutional Neural Networks (CNN) and Graph Attention Networks (GAT) to capture spatio-temporal dependencies among agents. Benchmark tests on the NGSIM, HighD, and MoCAD datasets reveal that our model (GAVA) outperforms state-of-the-art baselines by at least 15.2%, 19.4%, and 12.0%, respectively. Our findings underscore the potential of leveraging human cognition principles to enhance the proficiency and adaptability of trajectory prediction algorithms in AVs.
Loading