Abstract: Large language models (LLMs) demonstrate impressive performance on downstream tasks through in-context learning(ICL). However, there is a significant gap between their performance in Named Entity Recognition (NER) and in fine-tuning methods. We believe this discrepancy is due to inconsistencies in labeling definitions in NER. In addition, recent research indicates that LLMs do not learn the specific input-label mappings from the demonstrations. Therefore, we argue that using examples to implicitly capture the mapping between inputs and labels in in-context learning is not suitable for NER. Instead, it requires explicitly informing the model of the range of entities contained in the labels, such as annotation guidelines. In this paper, we propose GuideNER, which uses LLMs to summarize concise annotation guidelines as contextual information in ICL. We have conducted experiments on widely used NER datasets, and the experimental results indicate that our method can consistently and significantly outperform state-of-the-art methods, while using shorter prompts. Especially on the GENIA dataset, our model outperforms the previous state-of-the-art model by 12.63 F1 scores.
Loading