A Photometric Machine-Learning Method to Infer Stellar Metallicity

Published: 01 Jan 2015, Last Modified: 15 May 2025DNIS 2015EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Following its formation, a star’s metal content is one of the few factors that can significantly alter its evolution. Measurements of stellar metallicity ([Fe/H]) typically require a spectrum, but spectroscopic surveys are limited to a few×106 targets; photometric surveys, on the other hand, have detected > 109 stars. I present a new machine-learning method to predict [Fe/H] from photometric colors measured by the Sloan Digital Sky Survey (SDSS). The training set consists of ~120,000 stars with SDSS photometry and reliable [Fe/H] measurements from the SEGUE Stellar Parameters Pipeline (SSPP). For bright stars (g′ ≤ 18 mag), with 4500 K ≤ t eff ≤ 7000 K, corresponding to those with the most reliable SSPP estimates, I find that the model predicts [Fe/H] values with a root-mean-squared-error (RMSE) of ~0.27 dex. The RMSE from this machine-learning method is similar to the scatter in [Fe/H] measurements from low-resolution spectra.
Loading