Abstract: LoRa is a wireless technology suited for long-range IoT applications. Leveraging LoRa technology for image transmission could revolutionize many applications, such as surveillance and monitoring, at low costs. However, transmitting images, through LoRa is challenging due to LoRa’s limited data rate and bandwidth. To address this, we propose a pipeline to prepare a reduced image payload for transmission captured by a camera in a reasonably static background, which is common in surveillance settings. The main goal is to minimize the uplink payload while maintaining image quality. We use a selective transmission approach where dissimilar images are divided into patches, and a deep learning Siamese network determines if an image or patch has new content compared to previously transmitted ones. The data is then compressed and sent in constant packets via HARQ to reduce downlink requirements. Enhanced super-resolution generative adversarial networks and principal component analysis are used to reconstruct the images/patches. We tested our approach with two surveillance videos at two sites using LoRaWAN gateways, end devices, and a ChirpStack server. Assuming no duty cycle restrictions, our pipeline can transmit videos—converted to 1616 and 584 frames—in 7 and 26 min, respectively. Increased duty cycle restrictions and significant image changes extend the transmission time. At Murdoch Oval, we achieved 100% throughput with no retransmissions required for both sets. At Whitby Falls Farm, throughput was 98.3%, with approximately 71 and 266 packets needing retransmission for Sets 1 and 2, respectively.
External IDs:dblp:journals/iot/IslamMDJS25
Loading