ScaleCert: Scalable Certified Defense against Adversarial Patches with Sparse Superficial LayersDownload PDF

May 21, 2021 (edited Jan 05, 2022)NeurIPS 2021 PosterReaders: Everyone
  • Keywords: Certified Defense, DNN Security, DNN Robustness
  • TL;DR: We propose a new certified defense method against adversarial patch attacks
  • Abstract: Adversarial patch attacks that craft the pixels in a confined region of the input images show their powerful attack effectiveness in physical environments even with noises or deformations. Existing certified defenses towards adversarial patch attacks work well on small images like MNIST and CIFAR-10 datasets, but achieve very poor certified accuracy on higher-resolution images like ImageNet. It is urgent to design both robust and effective defenses against such a practical and harmful attack in industry-level larger images. In this work, we propose the certified defense methodology that achieves high provable robustness for high-resolution images and largely improves the practicality for real adoption of the certified defense. The basic insight of our work is that the adversarial patch intends to leverage localized superficial important neurons (SIN) to manipulate the prediction results. Hence, we leverage the SIN-based DNN compression techniques to significantly improve the certified accuracy, by reducing the adversarial region searching overhead and filtering the prediction noises. Our experimental results show that the certified accuracy is increased from 36.3% (the state-of-the-art certified detection) to 60.4%on the ImageNet dataset, largely pushing the certified defenses for practical use.
  • Supplementary Material: pdf
  • Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
23 Replies

Loading