HyperSpikeASIC: Accelerating Event-Based Workloads With HyperDimensional Computing and Spiking Neural NetworksDownload PDFOpen Website

Published: 01 Jan 2023, Last Modified: 05 Nov 2023IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2023Readers: Everyone
Abstract: Today’s machine learning (ML) systems, running workloads, such as deep neural networks, which require billions of parameters and many hours to train a model, consume a significant amount of energy. Due to the complexity of computation and topology, even the quantized models are hard to deploy on edge devices under energy constraints. To combat this, researchers have been focusing on new emerging neuromorphic computing models. Two of those models are hyperdimensional computing (HDC) and spiking neural networks (SNNs), both with their own benefits. HDC has various desirable properties that other ML algorithms lack, such as robustness to noise, simple operations, and high parallelism. SNNs are able to process event-based signal data in an efficient manner. This work develops <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathsf {HyperSpike}$ </tex-math></inline-formula> , which utilizes a single, randomly initialized, and untrained SNN layer as a feature extractor connected to a trained HDC classifier. HDC is used to enable more efficient classification as well as provide robustness to errors. We experimentally show that <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathsf {HyperSpike}$ </tex-math></inline-formula> is on average <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$31.5\times $ </tex-math></inline-formula> more robust to errors than traditional SNNs. On Intel’s Loihi (Davies et al., 2018), <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathsf {HyperSpike}$ </tex-math></inline-formula> is <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$10\times $ </tex-math></inline-formula> faster and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$2.6\times $ </tex-math></inline-formula> more energy efficient over traditional SNN networks. We further develop <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathsf {HyperSpikeASIC}$ </tex-math></inline-formula> , a customized accelerator for <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathsf {HyperSpike}$ </tex-math></inline-formula> . By decoupling the neuron and synapses, <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathsf {HyperSpikeASIC}$ </tex-math></inline-formula> skips the inactive neurons and limits the neuron state updating to once per time step at most. <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathsf {HyperSpikeASIC}$ </tex-math></inline-formula> is <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$601\times $ </tex-math></inline-formula> faster and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$3467\times $ </tex-math></inline-formula> more energy efficient than <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathsf {HyperSpike}$ </tex-math></inline-formula> running on Intel’s Loihi for SNN acceleration, and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$12.2\times $ </tex-math></inline-formula> faster and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$211\times $ </tex-math></inline-formula> more energy efficient than the state-of-the-art SNN ASIC implementation (Wang et al., 2022).
0 Replies

Loading