Contextualise, Attend, Modulate and Tell: Visual Storytelling

Published: 01 Jan 2021, Last Modified: 14 Nov 2024VISIGRAPP (5: VISAPP) 2021EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Automatic natural language description of visual content is an emerging and fast-growing topic that has attracted extensive research attention recently. However, different from typical ‘image captioning’ or ‘video captioning’, coherent story generation from a sequence of images is a relatively less studied problem. Story generation poses the challenges of diverse language style, context modeling, coherence and latent concepts that are not even visible in the visual content. Contemporary methods fall short of modeling the context and visual variance, and generate stories devoid of language coherence among multiple sentences. To this end, we propose a novel framework Contextualize, Attend, Modulate and Tell (CAMT) that models the temporal relationship among the image sequence in forward as well as backward direction. The contextual information and the regional image features are then projected into a joint space and then subjected to an attention mechanism that captures the spatio-temp
Loading