Meta-Evolve: Continuous Robot Evolution for One-to-many Policy Transfer

Published: 16 Jan 2024, Last Modified: 05 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: policy transfer, transfer learning, imitation learning, reinforcement learning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: A method for efficiently transferring an expert policy from one robot to multiple different robots
Abstract: We investigate the problem of transferring an expert policy from a source robot to multiple different robots. To solve this problem, we propose a method named *Meta-Evolve* that uses continuous robot evolution to efficiently transfer the policy to each target robot through a set of tree-structured evolutionary robot sequences. The robot evolution tree allows the robot evolution paths to be shared, so our approach can significantly outperform naive one-to-one policy transfer. We present a heuristic approach to determine an optimized robot evolution tree. Experiments have shown that our method is able to improve the efficiency of one-to-three transfer of manipulation policy by up to 3.2$\times$ and one-to-six transfer of agile locomotion policy by 2.4$\times$ in terms of simulation cost over the baseline of launching multiple independent one-to-one policy transfers. Supplementary videos available at the project website: https://sites.google.com/view/meta-evolve.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: reinforcement learning
Submission Number: 278
Loading