Abstract: This paper studies minimax optimization problems $\min_x \max_y f(x,y)$,
where $f(x,y)$ is $m_x$-strongly convex with respect to $x$, $m_y$-strongly
concave with respect to $y$ and $(L_x,L_{xy},L_y)$-smooth. Zhang et al.
provided the following lower bound of the gradient complexity for any
first-order method: $\Omega\Bigl(\sqrt{\frac{L_x}{m_x}+\frac{L_{xy}^2}{m_x
m_y}+\frac{L_y}{m_y}}\ln(1/\epsilon)\Bigr).$ This paper proposes a new
algorithm with gradient complexity upper bound
$\tilde{O}\Bigl(\sqrt{\frac{L_x}{m_x}+\frac{L\cdot L_{xy}}{m_x
m_y}+\frac{L_y}{m_y}}\ln\left(1/\epsilon\right)\Bigr),$ where
$L=\max\{L_x,L_{xy},L_y\}$. This improves over the best known upper bound
$\tilde{O}\left(\sqrt{\frac{L^2}{m_x m_y}} \ln^3\left(1/\epsilon\right)\right)$
by Lin et al. Our bound achieves linear convergence rate and tighter dependency
on condition numbers, especially when $L_{xy}\ll L$ (i.e., when the interaction
between $x$ and $y$ is weak). Via reduction, our new bound also implies
improved bounds for strongly convex-concave and convex-concave minimax
optimization problems. When $f$ is quadratic, we can further improve the upper
bound, which matches the lower bound up to a small sub-polynomial factor.
0 Replies
Loading