An object-oriented representation for efficient reinforcement learningOpen Website

2008 (modified: 11 Nov 2022)ICML 2008Readers: Everyone
Abstract: Rich representations in reinforcement learning have been studied for the purpose of enabling generalization and making learning feasible in large state spaces. We introduce Object-Oriented MDPs (OO-MDPs), a representation based on objects and their interactions, which is a natural way of modeling environments and offers important generalization opportunities. We introduce a learning algorithm for deterministic OO-MDPs and prove a polynomial bound on its sample complexity. We illustrate the performance gains of our representation and algorithm in the well-known Taxi domain, plus a real-life videogame.
0 Replies

Loading