Multi-Task Learning for Interpretation of Brain Decoding ModelsOpen Website

2014 (modified: 11 Nov 2022)MLINI@NIPS 2014Readers: Everyone
Abstract: Improving the interpretability of multivariate models is of primary interest for many neuroimaging studies. In this study, we present an application of multi-task learning (MTL) to enhance the interpretability of linear classifiers once applied to neuroimaging data. To attain our goal, we propose to divide the data into spatial fractions and define the temporal data of each spatial unit as a task in MTL paradigm. Our result on magnetoencephalography (MEG) data reveals preliminary evidence that, (1) dividing the brain recordings into spatial fractions based on spatial units of data and (2) considering each spatial fraction as a task, are two factors that provide more stability and consequently more interpretability for brain decoding models.
0 Replies

Loading