RankRAG: Unifying Context Ranking with Retrieval-Augmented Generation in LLMs

Published: 25 Sept 2024, Last Modified: 06 Nov 2024NeurIPS 2024 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: LLM, Retrieval-augmented Generation, Ranking
Abstract: Large language models (LLMs) typically utilize the top-k contexts from a retriever in retrieval-augmented generation (RAG). In this work, we propose a novel method called RankRAG, which instruction-tunes a single LLM for both context ranking and answer generation in RAG. In particular, the instruction-tuned LLMs work surprisingly well by adding a small fraction of ranking data into the training blend, and outperform existing expert ranking models, including the same LLM exclusively fine-tuned on a large amount of ranking data. For generation, we compare our model with many strong baselines, including ChatQA-1.5, an open-sourced model with the state-of-the-art performance on RAG benchmarks. Specifically, our Llama3-RankRAG-8B and Llama3-RankRAG-70B significantly outperform Llama3-ChatQA-1.5-8B and Llama3-ChatQA-1.5-70B, respectively, on nine general knowledge-intensive benchmarks for RAG. In addition, it also performs comparably to GPT-4 on five RAG benchmarks in the biomedical domain without instruction fine-tuning on biomedical data, demonstrating its superb capability for generalization to new domains.
Primary Area: Natural language processing
Submission Number: 12320
Loading