Implicit Generation and Modeling with Energy Based ModelsDownload PDF

Yilun Du, Igor Mordatch

06 Sept 2019 (modified: 05 May 2023)NeurIPS 2019Readers: Everyone
Abstract: Energy based models (EBMs) are appealing due to their generality and simplicity in likelihood modeling, but have been traditionally difficult to train. We present techniques to scale MCMC based EBM training on continuous neural networks, and we show its success on the high-dimensional data domains of ImageNet32x32, ImageNet128x128, CIFAR-10, and robotic hand trajectories, achieving better samples than other likelihood models and nearing the performance of contemporary GAN approaches, while covering all modes of the data. We highlight some unique capabilities of implicit generation such as compositionality and corrupt image reconstruction and inpainting. Finally, we show that EBMs are useful models across a wide variety of tasks, achieving state-of-the-art out-of-distribution classification, adversarially robust classification, state-of-the-art continual online class learning, and coherent long term predicted trajectory rollouts.
Code Link: https://github.com/openai/ebm_code_release
CMT Num: 1955
0 Replies

Loading