Towards a generic deep learning pipeline for traffic measurementsOpen Website

2021 (modified: 17 Apr 2023)StudentWorkshop@CoNEXT 2021Readers: Everyone
Abstract: Traffic measurements are key for network management as testified by the rich literature from both academia and industry. At their foundation, measurements rely on transformation functions f(x) = y, mapping input traffic data x to an output performance metric y. Yet, common practices adopt a bottom-up design (i.e., metric-based) which leads to (i) invest a lot of efforts into (re)discovering how to perform such mapping and (ii) create specialized solutions. For instance, sketches are a compact way to extract traffic properties (heavy-hitters, super-spreaders, etc.) but require analytical modeling to offer correctness guarantees and careful engineering to enable in-device deployment and network-wide measurements.
0 Replies

Loading