PipeEdge: A trusted pipelining collaborative edge training based on blockchain
Abstract: Powered by the massive data generated by the blossom of mobile and Web-of-Things (WoT) devices, Deep Neural Networks (DNNs) have developed both in accuracy and size in recent years. Conventional cloud-based DNN training incurs rapidly-increasing data and model transmission overheads as well as privacy issues. Mobile edge computing (MEC) provides a promising solution by facilitating DNN model training on edge servers at the network edge. However, edge servers often suffer from constrained resources and need to collaborate on DNN training. Unfortunately, managed by different telecoms, edge servers cannot properly collaborate with each other without incentives and trust. In this paper, we introduce PipeEdge, a scheme that promotes collaborative edge training between edge servers by introducing incentives and trust based on blockchain. Under the PipeEdge scheme, edge servers can hire trustworthy workers for pipelined DNN training tasks based on model parallelism. We implement PipeEdge and evaluate it comprehensively with four different DNN models. The results show that it outperforms state-of-the-art schemes by up to 173.98% with negligible overheads.
Loading