Cafe-Talk: Generating 3D Talking Face Animation with Multimodal Coarse- and Fine-grained Control

Published: 22 Jan 2025, Last Modified: 04 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: 3D talking face, generative model, fine-grained control, action units
TL;DR: Our model flexibly generates fine-grained 3D talking face animations, such as introducing a sudden smile or blink in a multimodal manner within an angry animation.
Abstract: Speech-driven 3D talking face method should offer both accurate lip synchronization and controllable expressions. Previous methods solely adopt discrete emotion labels to globally control expressions throughout sequences while limiting flexible fine-grained facial control within the spatiotemporal domain. We propose a diffusion-transformer-based 3D talking face generation model, Cafe-Talk, which simultaneously incorporates coarse- and fine-grained multimodal control conditions. Nevertheless, the entanglement of multiple conditions challenges achieving satisfying performance. To disentangle speech audio and fine-grained conditions, we employ a two-stage training pipeline. Specifically, Cafe-Talk is initially trained using only speech audio and coarse-grained conditions. Then, a proposed fine-grained control adapter gradually adds fine-grained instructions represented by action units (AUs), preventing unfavorable speech-lip synchronization. To disentangle coarse- and fine-grained conditions, we design a swap-label training mechanism, which enables the dominance of the fine-grained conditions. We also devise a mask-based CFG technique to regulate the occurrence and intensity of fine-grained control. In addition, a text-based detector is introduced with text-AU alignment to enable natural language user input and further support multimodal control. Extensive experimental results prove that Cafe-Talk achieves state-of-the-art lip synchronization and expressiveness performance and receives wide acceptance in fine-grained control in user studies.
Supplementary Material: zip
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2818
Loading